Algebraic Number Theory Final Exam

April 30 2015

This exam is of 50 marks. There are 5 questions, each of 10 marks. Some of them have sub-parts. Please read all the questions carefully and do not cheat. Good luck! (50)

1. Minkowski's bound implies that in every ideal class [I] there is an any ideal $J \in [I]$ with

$$\mathsf{N}(\mathsf{J}) \leqslant \left(\frac{4}{\pi}\right)^{\mathsf{s}} \cdot \frac{\mathfrak{n}!}{\mathfrak{n}^{\mathfrak{n}}} \sqrt{|\Delta_{\mathsf{K}}|}.$$

where $\Delta_{\mathbf{K}}$ is the discriminant and $\mathbf{n} = \mathbf{r} + 2\mathbf{s} = [\mathbf{K} : \mathbb{Q}]$. Use it to compute the class number of a. $\mathbb{Q}(\sqrt{10})$. b. $\mathbb{Q}(\sqrt{-11})$ (5)

2a. Let $K = \mathbb{Q}(\sqrt{5})$. Compute the Artin map on primes and use that to find congruence conditions which determine the behaviour of primes - namely which primes split, ramify and are inert. (8)

2b. In particular, determine what happens to the prime 19. (2)

3a.. Let \mathbb{U}_p denote the group of units in \mathbb{Z}_p , the valuation ring of \mathbb{Q}_p . Show that (5)

$$\mathbb{U}_{p} = \{ \mathbf{x} \in \mathbb{Q}_{p} || \mathbf{x}|_{p} = 1 \}$$

3b Show that $\mathbb{Q}_{p}^{*} = \mathbb{Q}_{p} - \{0\}$ satisfies

$$\mathbb{Q}_p^* \simeq \mathbb{Z} \times \mathbb{U}_p$$

4. Prove that \mathbb{Z}_p is compact with respect to the metric topology induced by the p-adic metric. (Hint: One way to do it is to show it is **complete** and **totally bounded**, where totally bounded means that it can be covered by finitely many ϵ -balls for any $\epsilon > 0$.) (10)

5a. Let $A \subset B$ be integral domains with A integrally closed and B integral over A. Prove that if \mathfrak{P} is a non-zero prime ideal of B then $\mathfrak{P} \cap A$ is a non-zero prime ideal of A. (6)

5b. Let A be a field and B an integral domain containing A which is integral over A. Show that B is a field. (4)

(5)